Digital Signal Processing

Lab 07: Fourier Analysis for CT Signals and Systems




Fourier Analysis for Continuous-Time Signhals and Systems

The purpose of this lab 1s to

Learn techniques for representing continuous-time periodic
signals using orthogonal sets of periodic basis functions.

Study properties of exponential, trigonometric and compact

Fourier series.



Continuous-Time Signals and Systems

* In Chapters 1 and 2 we have developed techniques for analyzing
continuous-time signals and systems {from a time-domain
perspective.

= A continuous-time signal can be modeled as a function of time.

y(#) = Sys{x(9)}

= A CTLTI system can be represented by a constant-coefficient linear

differential equation, or by means of an impulse response.

s

* The output signal of a CTLTI system can be determined by solving

the differential equation or by using the convolution operation.



Analysis of Periodic Continuous-Time Signals

Most periodic continuous-time signals in engineering problems can
be expressed as linear combinations of sinusoidal basis functions.

The basis functions can either be individual sine and cosine
functions, or they can be in the form of complex exponential

functions that combine sine and cosine functions together.
x(t) = Asin(w,t + 0)
x(t) = Acos(w,t + 0)

Jwyt

e’ =cos(w,t)+ jsin(w,t)



Fourier Series

= Fourier Series: Any periodic function can be expressed as the sum
of sines and/or cosines of different frequencies, each multiplied by a

different coefficient.
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Approximating a Periodic Signal With Trigonometric Functions

A signal x(#) which 1s periodic with period 7|, has the property
x(t)=x(t+1))
Furthermore, a signal that 1s periodic with period 7, 1s also periodic

with k7|, for any integer k.
x(t)=x(t+kT))

Yy = COS X y = sin x
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Approximating a Periodic Signal With Trigonometric Functions

" Suppose that we wish to approximate this signal using just one

trigonometric function.
# (1)

* The first two questions that need to be answered are:
1. Should we use a sine or a cosine?

2. How should we adjust the parameters of the trig function?



Approximating a Periodic Signal With Trigonometric Functions

* The sine function has odd symmetry, since
sin(—x) = —sin(x)
* On the other hand, the cosine function has even symmetry since

cos(—x) = cos(x)

WV ‘}?

-

A A
Y = COS X y = sin x

/N[

= > X
3 27
g

o1 f—— -




Approximating a Periodic Signal With Trigonometric Functions

= Therefore it would make sense to choose the sine function.

=  Qur approximation would be in the form

T (t) =~ by sin (wt)
T (t)




Approximating a Periodic Signal With Trigonometric Functions

= Since x(¢#) has a fundamental period of 7|, it would make sense to

pick a sine function with the same fundamental period.

Zﬁ(l) (t) — bl Sin (wot)

* Our next task 1s to determine the value of the coefficient b;,.

= How should b5, be chosen to get the best approximation?



Approximating a Periodic Signal With Trigonometric Functions

Let us define the approximation error as the difference between the

square-wave signal and its approximation:
s =z -z () =2 (t) — by sin (wot)

The best approximation to using only one trigonometric function 1s

7(1) (t)

4A
= — sin (wot)
_

st)=z()—z0(¢)
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Approximating a Periodic Signal With Trigonometric Functions

* The three-frequency approximation

73 (1) = by sin (wot) + be sin (2wot) + bs sin (3wot)

* The optimum coefficient values

4A 4A
b1:—, 52:0, and b3:—
7 3T




Trigonometric Fourier Series (TFS)




Trigonometric Fourier Series (TFS)

= Consider a signal x(¢) that is periodic with fundamental period 7|, and

associated fundamental frequency f, = 1/7,,.

* We want to represent this signal using a linear combination of
sinusoidal functions in the form
T (t) =ap + ay cos (wot) + ag cos (2wot) + ... + ay cos (kwot) . ..
+ by sin (wot) 4 bo sin (2wot) + ... 4+ bi sin (kwot) + . ..

* Using more compact notation

T(t) =ao+ Z aj cos (kwot) + Z bi. sin (kwot)
k=1 k=1



Trigonometric Fourier Series (TFS)

Trigonometric Fourier series (TFS):

1. Synthesis equation:

T (t) =ag+ Z aj cos (kwot) + Z by sin (kwot)
k=1 k=1

2. Analysis equations:

9 to+To
ap = — T (t) cos (kwot) dt , for k=1,...,00
1o Ji,
9 to+To
b, = — x (t) sin (kwot) dt , for k=1,...,00
T(l to
1 to+To
a x(t) dt (de component)

TO to



Integrals
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Integrals

jcos(x)dx sin(x)|"_ =sin(a)—sin (a) = sin(a) +sin (a) = 2sin (a)

J sin (x) dx = —cos(x)‘: =—cos(a)+cos(—a)=—cos(a)+cos(a)=0



Example 4.1

Example 4.1: Trigonometric Fourier series of a periodic pulse train

A pulse-train signal z (t) with a period of Ty = 3 seconds is shown in Fig. 4.5.
Determine the coefficients ot the TFES representation of this signal.




Example 4.1 — Solution

Solution: In using the integrals given by Eqns. (4.41), (4.42), and (4.43), we can start at any
arbitrary time instant ¢y and integrate over a span of 3 seconds. Applying Eqn. (4.43) with
to = 0 and 1y = 3 seconds, we have

1 1 3 1
apg = — [/ (1) dt+/ (0) dt] S
3 0 1 3

The fundamental frequency is fo = 1/1p = 1/3 Hz, and the corresponding value of wq is
( ) _ g §

2
wo = 27 fo = ?W rad/s.

Using Eqn. (4.41), we have

9 1 3
ak =3 [/ (1) cos (2mkt/3) dt+/ (0) cos (2mkt/3) dt
* 0 1
~ sin (27k/3)

for k=1.2.....00



Example 4.1 — Solution

Finally, using Eqn. (4.42), we get

1 3
by, =3 [/ (1) sin (27kt/3) dt +/ (0) sin (27kt/3) dt]
! 0 1

- 1 —cos(27k/3)

for k=1.2.....00

Using these coefficients in the synthesis equation given by Eqn. (4.40), the signal z () can
now be expressed in terms of the basis functions as

1 <= [ sin(27k/3 . /1 —cos(27k/3
P (1) = 5+ (bm( 7; / )) cos (2mkt/3)+ Y ;( cos (2mk/ )) sin (27kt/3)  (4.44)
. TR
k=1

mk




Example 4.2

Example 4.2: Approximation with a finite number of harmonics

Consider again the signal x (f) of Example 4.1. Based on Eqns. (4.25) and (4.26), it would
theoretically take an infinite number of cosine and sine terms to obtain an accurate repre-
sentation of it. On the other hand, values of coefficients a; and b are inversely proportional
to k, indicating that the contributions from the higher order terms in Eqn. (4.44) will de-
cline in significance. As a result we may be able to neglect high order terms and still obtain
a reasonable approximation to the pulse train. Approximate the periodic pulse train of
Example 4.1 using (a) the first 4 harmonics, and (b) the first 10 harmonics.



Example 4.2 — Solution

Solution: Recall that we obtained the following in Example 4.1:

1 sin (27k/3) 1 — cos (2mk/3)
an = - . aj = . bfa =
3 mk Tk

These coefficients have been numerically evaluated for up to & = 10, and are shown in

Table 4.1.
k atr b;;
0 0.3333
1 0.2757 | 0.4775
2 —0.1378 | 0.2387
3 0.0 0.0
4 0.0689 | 0.1194
D —0.0551 | 0.0955
6 0.0 0.0
7 0.0394 | 0.0682
8 —0.0345 | 0.0597
9 0.0 0.0
10 0.0276 | 0.0477

Table 4.1 — TFE'S coefficients for the pulse train of Example 4.2.



Example 4.2 — Solution

Let (™) (t) be an approximation to the signal  (¢) utilizing the first m harmonics of
the fundamental frequency:

T

#M) (1) = ag + Z aj cos (kwot) + Z bi. sin (kwot) (4.45)
k=1 k=1
Using m = 4, we have
# (1) = 0.3333 4+ 0.2757 cos (27t /3) — 0.1378 cos (47t /3) + 0.0689 cos (87t/3)

+ 0.4775 sin (27t /3) + 0.2387 sin (47t /3) 4+ 0.1194 sin (87t /3)

A similar but lengthier expression can be written for the case m = 10 which we will skip to
save space. Fig. 4.6 shows two approximations to the original pulse train using the first 4
and 10 harmonics respectively.
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Example 4.2 — Solution
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Example 4.3

Example 4.3: Periodic pulse train revisited

Determine the TFEFS coefficients for the periodic pulse train shown in Fig. 4.7.

B I S




Example 4.3 — Solution

Solution: This is essentially the same pulse train we have used in Example 4.1 with one
minor difference: The signal is shifted in the time domain so that the main pulse is centered
around the time origin ¢ = 0. As a consequence, the resulting signal is an even function of
time, that is, it has the property  (—t) = z (t) for —oco < t < 0.

Let us take one period of the signal to extend from ¢y = —1.5 to t9 + 1o = 1.5 seconds.
Applying Eqn. (4.43) with tg = —1.5 and Ty = 3 seconds, we have

=
.t

1 [ 1
— _ 1) dt = =
0 3/f__0_r.() 3



Example 4.3 — Solution

Using Eqn. (4.41) yields

2 [U» _ 2 ok /3
aj, = Tf (1) cos 2kt /3) dt = 25 CTE/3)
3 —0.5 ’FTk

and using Eqn. (4.42)
9 05
b = 2 / (1) sin (27kt/3) dt =0
—0.5
Thus, z (t) can be written as

1 =, /2 sin (mk/3
t) :34—2( /))cos(kwot)

k=1




Problem 4.2

4.2. Consider the pulse train shown in Fig. P.4.2.

7 (t)

0.3 |

Figure P. 4.2

o

Determine the fundamental period 7y and the fundamental frequency wq for the signal.

=

Using the technique described in Section 4.2 find an approximation to 2 (f) in the
form
#W (t) & ag + ay cos (wot) + by sin (wot)

Determine the optimum coefficients ag, a1 and b.



Problem 4.2 — Solution

d. The fundamental period is Ty = 1 second which corresponds
to a fundamental frequency of fo =1 Hz or wy =27 rad/s.

b.

1
a():/ X(t)dt=03A
0

b A sin (0.67)
ap =2 X(t)cos2mt) dt = -
-1

A|1-cos(0.67)]
T

1
b1 :2/ X(t)sin(2mt) dt =
0



Problem 4.3

4.3. Consider again the pulse train shown in Fig. P.4.2. Using the technique described in
Section 4.2 find an approximation to x (¢) in the form

2 (1) &~ ag + a1 cos (wot) + by sin (wot) + ag cos (2wot) + ba sin (2wot)

=

Figure P. 4.2



Problem 4.3 — Solution

1
do =f () dt=03A
0

b A sin (0.67)
a;=2 [ Xx(f)cos(2mt)drt=
0 Tl
b A|1-cos(0.67)]
bi=2 [ Xx(t)sin(2nt)dt=
0 T
b Asin (1.27)
a, =2 [ Xx(t)cos(dnt)dt=
0 27T
L A[1-cos(1.2m)]
b2:2/ xX(f)sin(dnt) dt =
0 27T



Problem 4.5

45. Consider the pulse train z (¢) shown in Fig. P.4.5.

Figure P. 4.5

a. Determine the fundamental period 1y and the fundamental frequency wq for the signal.

=

Using the approach followed in Section 4.2 determine the coefficients of the approxi-
mation
72 (t) = ag + aq cos (wot) + as cos (2wot)

to the signal 7 (¢) that results in the minimum mean-squared error.



Problem 4.5 — Solution

A. The fundamental period is Ty = 2 seconds which corresponds to a fundamental frequency of
fo=1/2Hz or wg = 7 rad/s.

1 /! 1
6102—/ X()dt=—
2/, >

1 2
ai =/ X(t)cos(mt)dt =—
0

b.

T

1
a- :/ X(t)cos(2nt)dt=0
-1



Exponential Fourier Series (EFS)

» Fourier series representation of the periodic signal x(¢) can also be
written 1n alternative forms.
= (Consider the use of complex exponentials as basis functions so that

the signal x(¢) 1s expressed as
o

T(t) = Z cj, e7fwot

k=—o00
» This 1s referred to as the exponential Fourier series (EFS)

representation of the periodic signal.



Euler’s Formula

cos(—x) = cos(x)

sin(—x) = —sin(x)

e’ =cos(x) + jsin(x)

e’ =cos(—x)+ jsin(—x)

e’ = cos(x)— jsin(x)

e’ +e 7 =2cos(x)

1 . |
cos(x) = Ee” + Ee_’x



Exponential Fourier Series (EFS)

Exponential Fourier series (EFS):

1. Synthesis equation:

2. Analysis equation:



Example 4.5

Example 4.5: Exponential Fourier series for periodic pulse train

Determine the EFS coefficients of the signal x () of Example 4.3, shown in Fig. 4.7, through
direct application of Eqn. (4.72).

S




Example 4.5 — Solution

2k
_J_

0.5
%zijay S dt =

-0.5

1| ( 2k j . ( 2k joj
= cos| ———¢ |+ jsin| ———¢
—j2rmk | 3 3

-0.5

1 | (2ﬂk j o (2ﬂk )ﬂj

= cos| ——t¢ |— jsin| =——1¢
—j2rk i 3 3 1os

1
3 —j2rk

-0.5

0.5

to[ o (2xk 1T 1 [ (2mk
= 0—jsin| —¢ = ——| sin| —1
—Jj2rk 3 2wk 3 o

-0.5 -

1 : (ﬂkj ] k 1 . [ 7k . [ 7k
=——|sin| — |—-sin| ——— | |=——| sin| — |+sIin| —
2rck | 3 3 2rck 3 3

1| . (nkj 1. nkj
=——|2sIn| — | |=—sIn| —
2k 3 wk 3




Example 4.5 — Solution

Solution: Using Eqn. (4.72) with to = —1.5 s and Ty = 3 s, we obtain

1 /0.5 (1) e—j}ﬂ'h?X?) dt _ Sill (Wk/g)

Ck — =
3 J_ o5 Tk

The signal = (t) can be expressed in terms of complex exponential basis functions as

- = sin (mk/3)\ o 1t/
i (t) = Z ( — >€j2 kt/3

k=—o0




Example 4.5 — Solution

/ A\

/! \
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Figure 4.1 | — The line spectrum for the pulse train of Example 4.5.



Example 4.9

Example 4.9: Spectrum of multi-tone signal

Determine the EF'S coefficients and graph the line spectrum for the multi-tone signal
T (t) = cos (2w [10fy| t) + 0.8 cos (27 fyt) cos (27 [10 fy| 1)

shown in Fig. 4.19.

| panl fn ) Aaanll
A LA LA

Figure 4.19 — Multi-tone signal of Example 4.9.



Example 4.9 — Solution

x(t) =cos(2x10 f,t)+0.8cos(2x f,t) cos(2710 £ t)

Using cos(a)cos(b) =0.5cos(a+b)+0.5cos(a—>b)
x(t)=cos(2710f,t)+0.4cos(227 f,t) + 0.4 cos(18x f,t)
x(t)=cos(2x10f,t)+0.4cos(2z11ft)+0.4cos(279 £ ¢)

Applylng COS(.X) = O.Sejx 4+ O.Se—jx

X(1) = 0.5e"*7 £0.5¢7 7270 10272 0.2 T 40,2877 0.2



Example 4.9 — Solution

() = 0.5¢"*1 40 .5¢7 2N 40 22 40207 4 () 272N 4 (.22

Co — C—9 — 0.2,
cto = c—10 = 0.5,
cCi1 = C=-11 = 0.2
Ck
4 +0.5 ¢

I 1 DU ST 1 1

—10 0 10




Compact Fourier Series (CFS)

" Yet another form of the Fourier series representation of a periodic

signal 1s the compact Fourier series (CFS) expressed as

T(t) =dy+ de cos (kwot + o)

k=1



* Sinusoids with time varying frequency generate interesting sounds.

» For instance, consider the following signal:

2
x(t) = Acos (a)t + tzj

LetA=1and o =2.
Use MATLAB to plot this signal for 0 < ¢ <40 in steps of 0.05.

Use sound to listen to the signal.



1;
W = 2;
X = @(t) A*cos(w*t + t.”"2/4);

>
|

t = 0:0.05:40; .
xt = x(t); ol
plot(t, xt); ol

sound(xt); ;




Interactive Demos

>> appr_demol
>> tfs _demol
>> tfs _demo2
>> tfs _demo3
>> efs _demol



Filtering in the Frequency Domain
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Filtering in the Frequency Domain: Lowpass Filters
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Filtering in the Frequency Domain: Lowpass Filters

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
vear. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the year
2000. 4

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yf@r
2000.

(2

ed




Filtering in the Frequency Domain: Highpass Filters




Image Enhancement Using the Laplacian in the Frequency Domain




Image Enhancement in the Frequency Domain




Periodic Noise Reduction Using Frequency Domain




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

