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Fourier Analysis for Continuous-Time Signals and Systems

The purpose of this lab is to

▪ Learn techniques for representing continuous-time periodic

signals using orthogonal sets of periodic basis functions.

▪ Study properties of exponential, trigonometric and compact

Fourier series.



Continuous-Time Signals and Systems

▪ In Chapters 1 and 2 we have developed techniques for analyzing

continuous-time signals and systems from a time-domain

perspective.

▪ A continuous-time signal can be modeled as a function of time.

y(t) = Sys{x(t)}

▪ A CTLTI system can be represented by a constant-coefficient linear

differential equation, or by means of an impulse response.

▪ The output signal of a CTLTI system can be determined by solving

the differential equation or by using the convolution operation.



Analysis of Periodic Continuous-Time Signals

▪ Most periodic continuous-time signals in engineering problems can

be expressed as linear combinations of sinusoidal basis functions.

▪ The basis functions can either be individual sine and cosine

functions, or they can be in the form of complex exponential

functions that combine sine and cosine functions together.
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Fourier Series

▪ Fourier Series: Any periodic function can be expressed as the sum

of sines and/or cosines of different frequencies, each multiplied by a

different coefficient.



Approximating a Periodic Signal With Trigonometric Functions

▪ A signal which is periodic with period T0 has the property

▪ Furthermore, a signal that is periodic with period T0 is also periodic

with kT0 for any integer k.
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Approximating a Periodic Signal With Trigonometric Functions

▪ Suppose that we wish to approximate this signal using just one

trigonometric function.

▪ The first two questions that need to be answered are:

1. Should we use a sine or a cosine?

2. How should we adjust the parameters of the trig function?



Approximating a Periodic Signal With Trigonometric Functions

▪ The sine function has odd symmetry, since

▪ On the other hand, the cosine function has even symmetry since

sin( ) sin( )x x− = −

cos( ) cos( )x x− =



Approximating a Periodic Signal With Trigonometric Functions

▪ Therefore it would make sense to choose the sine function.

▪ Our approximation would be in the form



Approximating a Periodic Signal With Trigonometric Functions

▪ Since has a fundamental period of T0, it would make sense to

pick a sine function with the same fundamental period.

▪ Our next task is to determine the value of the coefficient b1.

▪ How should b1 be chosen to get the best approximation?
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Approximating a Periodic Signal With Trigonometric Functions

▪ Let us define the approximation error as the difference between the

square-wave signal and its approximation:

▪ The best approximation to using only one trigonometric function is



Approximating a Periodic Signal With Trigonometric Functions

▪ The three-frequency approximation

▪ The optimum coefficient values



Trigonometric Fourier Series (TFS)



Trigonometric Fourier Series (TFS)

▪ Consider a signal that is periodic with fundamental period T0 and

associated fundamental frequency f0 = 1/T0.

▪ We want to represent this signal using a linear combination of

sinusoidal functions in the form

▪ Using more compact notation
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Trigonometric Fourier Series (TFS)



Integrals
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Integrals
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Example 4.1



Example 4.1 – Solution 



Example 4.1 – Solution 



Example 4.2



Example 4.2 – Solution 



Example 4.2 – Solution 



Example 4.2 – Solution 



Example 4.2 – Solution 



Example 4.3



Example 4.3 – Solution 



Example 4.3 – Solution 



Problem 4.2



Problem 4.2 – Solution



Problem 4.3



Problem 4.3 – Solution



Problem 4.5



Problem 4.5 – Solution



Exponential Fourier Series (EFS)

▪ Fourier series representation of the periodic signal can also be

written in alternative forms.

▪ Consider the use of complex exponentials as basis functions so that

the signal is expressed as

▪ This is referred to as the exponential Fourier series (EFS)

representation of the periodic signal.
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Euler’s Formula

cos( ) cos( )

sin( ) sin( )

cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

2 cos( )

1 1
cos( )

2 2

jx

jx

jx

jx jx

jx jx

x x

x x

e x j x

e x j x

e x j x

e e x

x e e

−

−

−

−

− =

− = −

= +

= − + −

= −

+ =

= +



Exponential Fourier Series (EFS)



Example 4.5



Example 4.5 – Solution 
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Example 4.5 – Solution 
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Example 4.9



Example 4.9 – Solution 
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Example 4.9 – Solution 
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Compact Fourier Series (CFS)

▪ Yet another form of the Fourier series representation of a periodic

signal is the compact Fourier series (CFS) expressed as



Sinusoids

▪ Sinusoids with time varying frequency generate interesting sounds.

▪ For instance, consider the following signal:

Let A = 1 and ω = 2.

Use MATLAB to plot this signal for 0 ≤ t ≤ 40 in steps of 0.05.

Use sound to listen to the signal.
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Sinusoids

A = 1;

w = 2;

x = @(t) A*cos(w*t + t.^2/4);

t = 0:0.05:40;

xt = x(t);

plot(t, xt);

sound(xt);



Interactive Demos

>> appr_demo1

>> tfs_demo1

>> tfs_demo2

>> tfs_demo3

>> efs_demo1



Filtering in the Frequency Domain



Filtering in the Frequency Domain: Lowpass Filters



Filtering in the Frequency Domain: Lowpass Filters



Filtering in the Frequency Domain: Highpass Filters



Image Enhancement Using the Laplacian in the Frequency Domain



Image Enhancement in the Frequency Domain



Periodic Noise Reduction Using Frequency Domain
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